jueves, 8 de marzo de 2012

Bibliografia Karl Friedrich Gauss



Nació en Braunschweig el 30 de abril de 1777 y estudió lenguas antiguas, pero a los 17 años comenzó a interesarse por las matemáticas e intentó dar una solución al problema clásico de la construcción de un heptágono regular, o figura de siete lados, con una regla y un compás. No solamente consiguió probar que esto era imposible, sino que siguió aportando métodos para construir figuras de 17, 257 y 65.537 lados. Durante estos estudios, probó que la construcción, con regla y compás, de un polígono regular con un número de lados impar sólo era posible cuando el número de lados era un número primo de la serie 3, 5, 17, 257 y 65.537 o un producto de dos o más de estos números. A raíz de este descubrimiento abandonó sus estudios de lenguas y se dedicó a las matemáticas. Estudió en la Universidad de Gotinga desde 1795 hasta 1798; para su tesis doctoral presentó una prueba de que cada ecuación algebraica tiene al menos una raíz o solución. Este teorema, que ha sido un desafío para los matemáticos durante siglos, se sigue denominando teorema fundamental de álgebra. Su tratado sobre la teoría de números, Disquisitionesarithmeticae (1801), es una obra clásica en el campo de las matemáticas.
Nacido en el seno de una familia humilde, desde muy temprana edad Karl Friedrich Gauss dio muestras de una prodigiosa capacidad para las matemáticas (según la leyenda, a los tres años interrumpió a su padre cuando estaba ocupado en la contabilidad de su negocio para indicarle un error de cálculo), hasta el punto de ser recomendado al duque de Brunswick por sus profesores de la escuela primaria.
En 1801 Gauss publicó una obra destinada a influir de forma decisiva en la conformación de la matemática del resto del siglo, y particularmente en el ámbito de la teoría de números, las Disquisiciones aritméticas, entre cuyos numerosos hallazgos cabe destacar: la primera prueba de la ley de la reciprocidad cuadrática; una solución algebraica al problema de cómo determinar si un polígono regular de n lados puede ser construido de manera geométrica (sin resolver desde los tiempos de Euclides); un tratamiento exhaustivo de la teoría de los números congruentes; y numerosos resultados con números y funciones de variable compleja (que volvería a tratar en 1831, describiendo el modo exacto de desarrollar una teoría completa sobre los mismos a partir de sus representaciones en el plano x, y) que marcaron el punto de partida de la moderna teoría de los números algebraicos.
Alrededor de 1820, ocupado en la correcta determinación matemática de la forma y el tamaño del globo terráqueo, Gauss desarrolló numerosas herramientas para el tratamiento de los datos observacionales, entre las cuales destaca la curva de distribución de errores que lleva su nombre, conocida también con el apelativo de distribución normal y que constituye uno de los pilares de la estadística.

No hay comentarios:

Publicar un comentario